
#1$2K3+4Introduction
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
PURPOSE.

SKELETON Version 2.0
32-Bit Assembly Language Programming
for the Microsoft® Windows® 95 operating system

by Wayne J. Radburn
I have seen many books on Windows® programming and assembly language programming.
Rarely have I found information that covers assembly language programming for Windows®. I
offer my SKELETON as an example of how such programming can be done. As you can see, it
goes beyond the bare minimum required to get a window up on the screen. In this help file I
briefly describe the Features used in SKELETON indicating where in the files they are
implemented. I also give short File Descriptions and make a few suggestions for Building
Projects based on the SKELETON files.

I hope that you will find this freeware SKELETON example helpful for learning a little more
about assembly language programming for Windows® and that you may also find some use for it
as a framework to start building your own applications.

Microsoft, Windows, Win32, Windows NT, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation.

1IN
2Introduction
3Introduction
4auto

#5$6K7+8Icon

The Icon source file Icon.ico gets used in Resource.rc. The constant IDI_ICON in Common.inc
identifies the Icon and gets used during Initialization in WinMain.asm and also in the definition
of the About Box.

5FIC
6Icon
7Icon
8auto

#9$10K11+12Menu Bar

The Menu Bar defined in Resource.rc provides the user with some commands available for the
application. The constant IDM_MENU in Common.inc identifies the Menu Bar and gets used
during Initialization in WinMain.asm. Other constants identify the commands in the File and
Help pop-up menus and get sent with the WM_COMMAND message to WndProc.asm.

The New, Open, Save, and Save As commands get handled in WndProc.asm by a call to the
appropriate procedure in CmdFile.asm. Some of these commands can get initiated by keystrokes
called Accelerators or by Toolbar buttons.

The Exit command gets handled in WndProc.asm by a call to the procedure MsgWM_CLOSE in
Msg.asm. Applications that do not need to do anything before exiting could simply jump to
caseWM_DESTROY in WndProc.asm.

The Help Topics command gets handled by a jump to caseIDM_HELPTOPICS in WndProc.asm
which displays Help.

The About Skeleton command gets handled by a jump to caseIDM_ABOUT in WndProc.asm
which displays the About Box.

9FMB
10Menu Bar
11Menu Bar
12auto

#13$14K15+16Accelerators

The Accelerators defined in Resource.rc allow the user to initiate some Menu Bar commands
with a simple keystroke. The constant IDA_ACCEL in Common.inc identifies the accelerator table
and gets used just before the MessageLoop in WinMain.asm.

The message loop translates the accelerator keystroke into the appropriate command which gets
sent with the WM_COMMAND message to WndProc.asm and gets handled as described in the
Menu Bar feature.

13FAC
14Accelerators
15Accelerators
16auto

#17$18K19+20Toolbar

The Toolbar displays buttons containing bitmap images related to the Menu Bar commands
which provide shortcuts to those commands.

In response to the WM_CREATE message, WndProc.asm calls MsgWM_CREATE in Msg.asm
which calls the CreateTBar procedure in ToolBar.asm. The Toolbar buttons created for
SKELETON support Tooltips.

In response to the WM_SIZE message, WndProc.asm calls MsgWM_SIZE in Msg.asm which sends
the message to the Toolbar so that it can adjust to the new window size.

17FTB
18Toolbar
19Toolbar
20auto

#21$22K23+24Tooltips

The Tooltips used in SKELETON display descriptive text about the Toolbar buttons from the
STRINGTABLE in Resource.rc.

The WM_NOTIFY message gets handled by a jump to caseWM_NOTIFY in WndProc.asm which
checks for the TTN_NEEDTEXT notification which gets handled by a call to NtfTTN_NEEDTEXT in
ToolBar.asm.

21FTT
22Tooltips
23Tooltips
24auto

#25$26K27+28Status Bar

The Status Bar used in SKELETON displays descriptive text about the Menu Bar and System
Menu commands from the STRINGTABLE in Resource.rc.

In response to the WM_CREATE message, WndProc.asm calls MsgWM_CREATE in Msg.asm
which calls the CreateSBar procedure in StatBar.asm.

The WM_MENUSELECT message gets handled by a jump to caseWM_MENUSELECT in
WndProc.asm which calls MsgWM_MENUSELECT in StatBar.asm.

In response to the WM_SIZE message, WndProc.asm calls MsgWM_SIZE in Msg.asm which sends
the message to the Status Bar so that it can adjust to the new window size.

25FSB
26Status Bar
27Status Bar
28auto

#29$30K31+32Help

The Help Topics command from the Help menu of the Menu Bar gets handled in WndProc.asm
by a jump to caseIDM_HELPTOPICS which gets WinHelp to open the Skeleton.cnt and
Skeleton.hlp files which contain helpful information about the SKELETON files.

WinHelp gets sent the HELP_QUIT message while processing the WM_DESTROY message in
caseWM_DESTROY in WndProc.asm.

29FHE
30Help
31Help
32auto

#33$34K35+36About Box

The About dialog box displays the Icon, program information, version number and copyright. It
gets defined in Resource.rc and identified by the constant IDD_ABOUT in Common.inc.

The About Skeleton command from the Help menu of the Menu Bar gets handled in
WndProc.asm by a jump to caseIDM_ABOUT which creates the dialog box. Further initialization
and message processing takes place in the About dialog procedure in About.asm.

33FAB
34About Box
35About Box
36auto

#37$38K39+40Version Information

The Version Information defined in Resource.rc and can be viewed by clicking the right mouse
button on SKELETON and selecting Properties from the pop-up menu.

37FVI
38Version Information
39Version Information
40auto

#41$42K43+44MakeFile

The NMAKE utility searches for the default file MakeFile which contains the Assembler,
Linker, Resource Compiler, and Help Compiler commands necessary to build from the source
files an updated SKELETON.

The command nmake clean erases the intermediate *.OBJ *.RES files allowing one to generate an
updated release version with the command nmake or a debug version with the command nmake
debug=y.

Note that changes to WindowsA.inc or Common.inc may have global effects requiring a clean
rebuild.

41MF
42MakeFile
43MakeFile
44auto

#45$46K47+48Common.inc

Common.inc contains the EQU, PROTO, EXTERNDEF directives for the constants, procedures,
and variables that require sharing between two or more of the Assembly Language Files and gets
included near the beginning of each of these files. WindowsA.inc gets included near the
beginning of Common.inc. Many of the constants must also get defined with the same value in
Resource.rc.

45CO
46Common.inc
47Common.inc
48auto

#49$50K51+52WindowsA.inc

WindowsA.inc contains a very small ASCII (non-UNICODE) subset of the Win32 API
Constants, Type Definitions, Structures, and Function Prototypes and gets included at the
beginning of Common.inc.

Note that adding more Function Prototypes to WindowsA.inc may require the addition of other
Libraries to the linking section of MakeFile.

49WA
50WindowsA.inc
51WindowsA.inc
52auto

#53$54K55+56Resource.rc

Resource.rc contains the SKELETON resource definitions or sources for the Icon, Menu Bar,
Accelerators, About Box, and Version Information. The Resource Compiler uses this file to
generate the Resource.res file which the Linker uses when creating SKELETON.

53RC
54Resource.rc
55Resource.rc
56auto

#57$58K59+60Icon.ico

I used Image Editor to create the SKELETON 32x32 Skull Icon which has a transparent
background.

57IC
58Icon.ico
59Icon.ico
60auto

#61$62K63+64WinMain.asm

WinMain.asm contains SKELETON's starting point at the label Start which also gets placed in
the linking section of MakeFile. The WinMain parameters get stored in global variables before
the call to WinMain. The SKELETON application exits after WinMain returns.

The WinMain procedure first makes a call to OnlyOneInstance and Initialization before loading
the Accelerators. It then stays in the MessageLoop sending the queued messages to
WndProc.asm until the user chooses to exit SKELETON which causes WinMain to return.

The OnlyOneInstance procedure tries to create a semaphore to prevent another instance of
SKELETON from starting. If the semphore already existed, the first SKELETON gets brought to
the foreground and the second attempt exits. Remove this procedure and the call to it in WinMain
to allow more than one instance of SKELETON to run at a time.

The Initialization procedure fills in the WNDCLASSEX structure in order to register the class,
create the window, and then finally get it displayed. Note that further initialization takes place in
response to the WM_CREATE message handled in WndProc.asm by a call to MsgWM_CREATE in
Msg.asm.

Note that according to the STDCALL calling convention, the called procedure should preserve the
EBX, ESI, EDI, EBP registers (also, the direction flag is clear on entry and should be returned
clear). The INVOKE directive takes care of preserving EBP for procedures defined with
parameters or local variables. Using USES EBX, ESI, EDI in the PROC directive when defining
procedures will preserve these other registers. I have not done this for WinMain and WndProc
since these procedures do not change EBX, ESI, EDI. Note that the procedures that they call
should now preserve these registers if they get used (see NewWindowName in CmdFile.asm for
an example).

61WM
62WinMain.asm
63WinMain.asm; STDCALL; USES
64auto

#65$66K67+68WndProc.asm

The WndProc procedure checks the message parameter and jumps to the appropriate section for
messages that require further processing. All other messages get sent to the DefWindowProc for
default processing. Note that for a large number of messages it becomes more space-time
efficient to search through a table of message IDs (using repne scasd for example) and calling
into another table which contains the corresponding address of the procedure which handles the
message.

Some messages and commands get handled completely within WndProc:

caseWM_DESTROY first sends the HELP_QUIT message to WinHelp and then sends the WM_QUIT
message which breaks out of the MessageLoop in WinMain.asm returning the exit code before
SKELETON terminates.

caseWM_NOTIFY handles messages or events sent by controls by a jump to the appropriate
section. The TTN_NEEDTEXT message for Tooltips gets handled in this section.

caseWM_COMMAND handles commands from the Menu Bar, Accelerators, and Toolbar by a
jump to the appropriate section.

caseIDM_HELPTOPICS sends the HELP_FINDER message to WinHelp which opens the help file
named in the .CONST section of WndProc.

caseIDM_ABOUT creates the About Box.

The other messages and commands get handled by a call to a procedure in Msg.asm or
CmdFile.asm.

65WP
66WndProc.asm
67WndProc.asm
68auto

#69$70K71+72Msg.asm

Msg.asm contains additional procedures which handle messages from WndProc.asm.

The caseWM_PAINT procedure redraws regions of the client area that have changed or require
updating. SKELETON does not display anything.

The caseWM_CREATE procedure centers the SKELETON window on the desktop. The call to
InitCommonControls must be made before creating the Toolbar and Status Bar. See
CmdFile.asm for details about CmdIDM_NEW. Note that at this point the call to CreateWindowEx
in WinMain has not yet returned so the hWnd parameter of WndProc gets used instead of
hMainWnd which does not yet have a valid handle value.

The caseWM_CLOSE procedure first calls SaveChanges in CmdFile.asm which returns FALSE if
SKELETON should not exit.

The caseWM_SIZE procedure makes adjustments required by a change in window size. Both the
Status Bar and the Toolbar get updated.

69MS
70Msg.asm
71Msg.asm
72auto

#73$74K75+76Misc.asm

The MiscCenterWnd procedure centers the position of a child window based on the position of
the parent window, but will keep the child window visible on the desktop. It gets used in
Msg.asm to center the main window on the desktop and in About.asm to center the About Box.

73MI
74Misc.asm
75Misc.asm
76auto

#77$78K79+80About.asm

The About dialog procedure handles the About Box dialog message processing. The
caseWM_INITDIALOG section centers the window while the caseWM_COMMAND section checks
to see if the user sent a command to close the dialog window which gets handled by a jump to
caseEND.

77AB
78About.asm
79About.asm
80auto

#81$82K83+84StatBar.asm

The CreateSBar procedure creates a default one part Status Bar.

The MsgWM_MENUSELECT procedure displays descriptive text in a simple mode status bar based
on whether the System Menu, File Menu, Help Menu, or commands in these menus, have been
activated by the mouse or keyboard. The simple mode status bar text does not effect the items in
the other parts set up for the status bar.

81SB
82StatBar.asm
83StatBar.asm
84auto

#85$86K87+88ToolBar.asm

The CreateTBar procedure creates a Tool Bar with the three buttons defined in the tbButton
table which uses the default small color bitmaps.

The NtfTTN_NEEDTEXT procedure points to a string filled with the required text for the Tooltips
control.

85TB
86ToolBar.asm
87ToolBar.asm
88auto

#89$90K91+92CmdFile.asm

CmdFile.asm contains procedures which can provide a framework for supporting files with
commands from the Menu Bar. The named or changed status of the file gets stored in fFileStatus.
The file name gets placed on the title bar of the SKELETON window.

The CmdIDM_NEW procedure first calls SaveChanges. If it returns TRUE then the file name gets
set to the default name Untitled and the fFileStatus NAMEDbit and CHANGEDbit both get cleared
before a call to NewWindowName. SKELETON does not have any other data structures to
initialize.

The CmdIDM_OPEN procedure first calls SaveChanges. If it returns TRUE then the Open
common dialog box prompts the user for a file to open. If this returns with a name then the
fFileStatus NAMEDbit gets set and the CHANGEDbit gets cleared before a call to
NewWindowName. SKELETON does not open any files.

The CmdIDM_SAVE procedure first checks the fFileStatus NAMEDbit and the Save As common
dialog prompts the user for a file name if required. The fFileStatus NAMEDbit gets set and the
CHANGEDbit gets cleared before a call to NewWindowName. SKELETON does not save
anything to any files.

The SaveChanges procedure checks the fFileStatus CHANGEDbit and if changes have been
made displays a Yes/No/Cancel message box for saving the changes. It returns FALSE only if the
user chooses to cancel.

The NewWindowName procedure changes the title bar text to the file name first without the file
extension followed by an asterisk if the file has changed and then the application name.

89CF
90CmdFile.asm
91CmdFile.asm
92auto

#93$94K95+96Skeleton.hlp

Skeleton.hlp and Skeleton.cnt get used by WinHelp to display the help about the SKELETON
files. I found that the help files of the Help Compiler contained the best source of information
about building help files. You now also have the source files of SKELETON help as an example.

93SH
94Skeleton.hlp
95Skeleton.hlp
96auto

#97$98K99+100Skeleton.cnt

Skeleton.cnt contains the contents page of Skeleton.hlp which I created using the Help Compiler.

97SC
98Skeleton.cnt
99Skeleton.cnt
100auto

#101$102K103+104HelpFile.hpj

The Help Compiler controls the content of this file based on selected options, files, and settings,
which it uses when building Skeleton.hlp.

101HP
102HelpFile.hpj
103HelpFile.hpj
104auto

#105$106K107+108HelpFile.rtf

I actually used Notepad with the Word Wrap option to create this file. A text editor that handles
Rich-Text Format (RTF) files would have made building the help files much easier and quicker.
More information about RTF files can be found in the help files of the Help Compiler.

105HR
106HelpFile.rtf
107HelpFile.rtf
108auto

#109$110K111+112Before you Start

If you plan on using the SKELETON files for application development, you should do the
following now so that you have less to do when you copy the files into a new project folder:

- Edit MakeFile so that the paths to the Building Tools correctly point to the tools that you use.
- Edit Common.inc so that the path correctly points to where you keep WindowsA.inc.
- Edit Resource.rc and put your name and/or company name in the definition of the About Box
and Version Information.

109BS
110Before you Start
111Before you Start
112auto

#113$114K115+116Building Tools

The following lists the additional software I used in building the SKELETON project:

Microsoft® Macro Assembler (MASM) Version 6.11d
ML Assembler

Microsoft® Visual C++® Version 4.0
LINK 32-Bit Linker
NMAKE Program Maintenance Utility

Microsoft® Win32® Software Development Kit (SDK)
*.LIB, *.H Library Files and Headers
RC Resource Compiler
IMAGEDIT Image Editor
HCW Help Workshop/Compiler

Microsoft® Windows® 95
NOTEPAD Text Editor

113BT
114Building Tools
115Program Maintenance Utility; NMAKE; Assembler; ML; Linker; LINK; Resource Compiler;
RC; Help Compiler; HCW; Image Editor; IMAGEDIT; Notepad
116auto

#117$118K119+120Getting Started

As an exercise to test your familiarity with the SKELETON files, you could create several
folders edited to contain different versions of SKELETON with fewer features. Simple
applications may not require the toolbar, status bar, file and/or help features. Now when you
come up with a great idea for an application you can:

- Copy a SKELETON folder to a new folder.
- Create a new Icon for your application.
- Rename the PROJECT in MakeFile.
- Rename the szClassName in WinMain.asm.
- Change the About Box and Version Information text in Resource.rc.
- Change some of the STRINGTABLE and MENU text in Resource.rc.
- Rename the szHelpFile in WndProc.asm.
- Remove $(PROJECT).hlp from ALL: in MakeFile and put it back in when you are ready to start
building your help files.
- Erase Skeleton.hlp, Skeleton.cnt, HelpFile.hpj, and HelpFile.rtf since your help files will
contain information specific to your application.

- The rest really depends on what you have envisioned for your application. SKELETON can be
used for getting started. It is now up to you to finish the rest of the work on that great idea...

117GS
118Getting Started
119Getting Started
120auto

